skip to main content


Search for: All records

Creators/Authors contains: "Walls, Ramona"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Climate change has already caused local extinction in many plants and animals, based on surveys spanning many decades. As climate change accelerates, the pace of these extinctions may also accelerate, potentially leading to large‐scale, species‐level extinctions. We tested this hypothesis in a montane lizard. We resurveyed 18 mountain ranges in 2021–2022 after only ~7 years. We found rates of local extinction among the fastest ever recorded, which have tripled in the past ~7 years relative to the preceding ~42 years. Further, climate change generated local extinction in ~7 years similar to that seen in other organisms over ~70 years. Yet, contrary to expectations, populations at two of the hottest sites survived. We found that genomic data helped predict which populations survived and which went extinct. Overall, we show the increasing risk to biodiversity posed by accelerating climate change and the opportunity to study its effects over surprisingly brief timescales.

     
    more » « less
  2. Informed policy and decision-making for food systems, nutritional security, and global health would benefit from standardization and comparison of food composition data, spanning production to consumption. To address this challenge, we present a formal controlled vocabulary of terms, definitions, and relationships within the Compositional Dietary Nutrition Ontology (CDNO, www.cdno.info ) that enables description of nutritional attributes for material entities contributing to the human diet. We demonstrate how ongoing community development of CDNO classes can harmonize trans-disciplinary approaches for describing nutritional components from food production to diet. 
    more » « less
  3. Abstract

    Omic BON is a thematic Biodiversity Observation Network under the Group on Earth Observations Biodiversity Observation Network (GEO BON), focused on coordinating the observation of biomolecules in organisms and the environment. Our founding partners include representatives from national, regional, and global observing systems; standards organizations; and data and sample management infrastructures. By coordinating observing strategies, methods, and data flows, Omic BON will facilitate the co-creation of a global omics meta-observatory to generate actionable knowledge. Here, we present key elements of Omic BON's founding charter and first activities.

     
    more » « less
  4. null (Ed.)
    Abstract Sampling the natural world and built environment underpins much of science, yet systems for managing material samples and associated (meta)data are fragmented across institutional catalogs, practices for identification, and discipline-specific (meta)data standards. The Internet of Samples (iSamples) is a standards-based collaboration to uniquely, consistently, and conveniently identify material samples, record core metadata about them, and link them to other samples, data, and research products. iSamples extends existing resources and best practices in data stewardship to render a cross-domain cyberinfrastructure that enables transdisciplinary research, discovery, and reuse of material samples in 21st century natural science. 
    more » « less
  5. Schwartz, Russell (Ed.)
  6. Background: When phenotypic characters are described in the literature, they may be constrained or clarified with additional information such as the location or degree of expression, these terms are called “modifiers”. With effort underway to convert narrative character descriptions to computable data, ontologies for such modifiers are needed. Such ontologies can also be used to guide term usage in future publications. Spatial and method modifiers are the subjects of ontologies that already have been developed or are under development. In this work, frequency (e.g., rarely, usually), certainty (e.g., probably, definitely), degree (e.g., slightly, extremely), and coverage modifiers (e.g., sparsely, entirely) are collected, reviewed, and used to create two modifier ontologies with different design considerations. The basic goal is to express the sequential relationships within a type of modifiers, for example, usually is more frequent than rarely, in order to allow data annotated with ontology terms to be classified accordingly. Method: Two designs are proposed for the ontology, both using the list pattern: a closed ordered list (i.e., five-bin design) and an open ordered list design. The five-bin design puts the modifier terms into a set of 5 fixed bins with interval object properties, for example, one_level_more/less_frequently_than, where new terms can only be added as synonyms to existing classes. The open list approach starts with 5 bins, but supports the extensibility of the list via ordinal properties, for example, more/less_frequently_than, allowing new terms to be inserted as a new class anywhere in the list. The consequences of the different design decisions are discussed in the paper. CharaParser was used to extract modifiers from plant, ant, and other taxonomic descriptions. After a manual screening, 130 modifier words were selected as the candidate terms for the modifier ontologies. Four curators/experts (three biologists and one information scientist specialized in biosemantics) reviewed and categorized the terms into 20 bins using the Ontology Term Organizer (OTO) (http://biosemantics.arizona.edu/OTO). Inter-curator variations were reviewed and expressed in the final ontologies. Results: Frequency, certainty, degree, and coverage terms with complete agreement among all curators were used as class labels or exact synonyms. Terms with different interpretations were either excluded or included using “broader synonym” or “not recommended” annotation properties. These annotations explicitly allow for the user to be aware of the semantic ambiguity associated with the terms and whether they should be used with caution or avoided. Expert categorization results showed that 16 out of 20 bins contained terms with full agreements, suggesting differentiating the modifiers into 5 levels/bins balances the need to differentiate modifiers and the need for the ontology to reflect user consensus. Two ontologies, developed using the Protege ontology editor, are made available as OWL files and can be downloaded from https://github.com/biosemantics/ontologies. Contribution: We built the first two modifier ontologies following a consensus-based approach with terms commonly used in taxonomic literature. The five-bin ontology has been used in the Explorer of Taxon Concepts web toolkit to compute the similarity between characters extracted from literature to facilitate taxon concepts alignments. The two ontologies will also be used in an ontology-informed authoring tool for taxonomists to facilitate consistency in modifier term usage. 
    more » « less
  7. Abstract

    Material samples are indispensable data sources in many natural science, social science, and humanity disciplines. More and more researchers recognize that samples collected in one discipline can be of great value for another. This has motivated organizations that manage a large number of samples to make their holdings accessible to the world. Currently, multiple projects are working to connect natural history and other samples managed by individual institutions or individuals into a universe of samples that follow FAIR principles. This poster reports the progress of the US NSF‐funded iSamples project, in the context of other efforts initiated by US DOE, DiSCCo, BCoN, and GBIF. By October 2021, we will also be able to present an iSamples prototype. We encourage individual organizations that hold material samples to get to know these projects and help shape these projects to realize the goal of a global linked sample cloud that connects all material samples and is accessible to all.

     
    more » « less
  8. Premise of the Study

    The Plant Phenology Ontology (PPO) was originally developed to integrate phenology observations of whole plants across different global observation networks. Here we describe a new release of thePPOand associated data pipelines that supports integration of phenology observations from herbarium specimens, which provide historical and modern phenology data.

    Methods and Results

    Critical changes to thePPOinclude key terms that describe how measurements from parts of plants, which are captured in most imaged herbarium specimens, relate to whole plants. We provide proof of concept for ingesting annotations from imaged herbarium sheets ofPrunus serotina, the common black cherry. We then provide an example analysis of changes in flowering timing over the past 125 years, demonstrating the value of integrating herbarium and observational phenology data sets.

    Conclusions

    These conceptual and technical advances will support the addition of phenology data from herbaria, but also could be expanded upon to facilitate the inclusion of data from photograph‐based citizen science platforms. With the incorporation of herbarium phenology data, new historical baseline data will strengthen the capability to monitor, model, and forecast plant phenology changes.

     
    more » « less